Small Modular Reactor (SMR) Deployment: Challenges and Opportunities for Thailand

Kanokrat TIYAPUN Reactor Center, Thailand Institute of Nuclear Technology

สถาบันเทคโนโลยีนิวเคลียร์แห่งชาติ (องค์การมหาชน) Thailand Institute of Nuclear Technology (Public Organization)

Contents

- Thailand Power Development Plan PDP
- Thailand Energy Assessment
- Electricity Generating
- Nuclear Power Program in Thailand
- Key Criteria and Requirements for SMRs in Thailand
- Nuclear Workforce in Thailand
- Integration of Renewable Energy Sources with SMRs
- Public Acceptance and Stakeholder Engagement
- **Challenges for Considering SMRs in Thailand**
- Summary and Conclusion

Thailand Power Development Plan

- Ministry of Energy (Thailand) developed 5 integration master plans as follows:
 - Thailand Power Development Plan: PDP,
 - Energy Efficiency Development Plan: **EEDP**,
 - Alternative Energy Development Plan: AEDP,
 - Natural Gas Supply Plan,
 - Petroleum Management Plan

- The new PDP called "Thailand Power Development Plan 2018-2036 (PDP2018)" focuses on
 - *Energy Security*: increasing power demand to correspond to National Economic and Social Development Plan with fuel diversification
 - *Economy*: maintaining an appropriate cost of power generation for long-term economic competitiveness
 - Ecology: lessening carbon dioxide intensity of power generation

Energy Assessments

- Review of the current situation in Thailand
- Assessment of future needs for energy demand and supply
- Assessment of available energy resources
- Evaluation of technological options use to generate electricity
- Development of alternative scenarios
- Assessment of economic, financial and environmental implementation
- Plans and strategies
- PDP 2023 will be submitted to the Minister of Energy (MOE) for consideration first, then will open for *public hearing in June 2023*

Electricity Generating

Electricity Generating Proportion in Thailand (2021)

Source: Energy Policy and Planning Office (Energy Statistic 2022)

Peak Power Demand Forecast 2017-2037

Power Demand (MW)

Ref: PDP 2018 Rev03

Nuclear Power Program in Thailand

Year	# Units	Capacity (MWe)	Operation year	Note	
PDP 2007	4	1,000 – 1,350	2020, 2021		
PDP 2007 Rev. 2	3	1,000	2020		
PDP 2010	5	1,000	2010, 2012, 2024, 2025, 2028		
PDP 2010 Rev. 2	4	1,000	2023, 2024, 2027, 2028	Revised after the	
PDP 2010 Rev. 3	2	1,000	2026, 2027	Fukushima accident in March, 2011	
PDP 2015	2	1,000	2035, 2036		
PDP 2018	-	-			
PDP 2022 (revising)	➔ Ministry of Energy is considering Small Modular Reactor (SMR) to integrate into SMART grid.				

Power Development Plan

Key Criteria and Requirements for SMRs in Thailand

- SMRs are varied designs address load requirements ranging from tens of megawatts to hundreds of mega watts
- The standardized designs with economies scale and unique safety features required approval from regulators (Office of Atoms for Peace) for licensing
- Significant capital investment cost associated with a large nuclear power plants, therefore, Thailand interested in smaller nuclear power plants with *lower capital investment and small grid systems*
- SMRs provides an option for *carbon-free energy* (smaller footprints) with *small siting* compared to old coal-fired power plants

Key Criteria and Requirements for SMRs

- **Modularity** factory fabrication of modules for a simple assembly on site and reactor units as modules that can be matched demand
- SMRs are *safe, clean, affordable energy option*
- SMRs provide several benefits with safeguards, security, and nonproliferation requirements
- SMRs offer *reducing in protection zone area* for emergency planning requirements
- SMRs offer the challenge of building *higher capacity grids* in *remote or rural areas* which can be constructed closer to the point of electricity needed
- SMRs can be *alternative method* which applied to replace other carbon-emitting energy generation methods

IAEA Milestones Document

- Milestones in the Development of a National Infrastructure For Nuclear Power, IAEA Nuclear Energy Series No. NG-G-3.1 (Rev. 1) 2007
- The Milestones Approach includes 19 nuclear infrastructure issues, requiring specific actions during each of the three phases that must be accomplished before embark on a nuclear power program
- The IAEA periodically reviews the status of development through INIR missions (13-18 Dec 2010)

MILESTONE 1 MILESTONE 2 MILESTONE 3 Ready to make a Ready to invite Ready to Nuclear power knowledgeable bids/negotiate a commission and option included commitment to a contract for the first operate the first in national nuclear power plant nuclear power nuclear power plant energy strategy programme PHASE 1 PHASE 3 PHASE 2 Considerations Preparatory work Activities to implement the first nuclear before a decision for the contracting to launch a and construction nuclear power of a nuclear power power plant programme is plant after a policy decision has been taken taken AT LEAST 10-15 YEARS FIRST NUCLEAR POWER PLANT PROJECT Final investment Commissioning decision Project Pre-project Operation Contracting activities development Decommissioning Construction

Thailand can make a knowledgeable decision on the introduction of nuclear power

REPORT	
on	
HE INTEGRATED NUCLEAR INFRASTRUCTURE REVIEW	De
(INIR) MISSION	
to	Te
Review the Status of the National Nuclear Infrastructure	on,
in Thailand) ГС

Development of the infrastructure for a national nuclear power program Ref: IAEA No. NG-G-3.1, 2007 Technology (Public Organization) n, Ongkharak, Nakorn Nayok 26120 Fax : +66 3739 2913 www.tint.or.th

Nuclear Workforce

- To implement a SMR program, it is important to have a *well-prepared basic requirement with competent workforce*
- Thailand builds on a strong base of workforce development for nuclear energy
 - Thailand Research Reactor-1 (TRR-1/M1), Thailand Institute of Nuclear Technology (TINT) which operating since 1977
 - Irradiation services, isotope production, nuclear research, education and training, and public tours
 - All vital to the evolution of nuclear technology in Thailand
- For Thailand workforce development is often identified as the *highest priority*
- Thailand plan to have *national capabilities* to supply nuclear workforce with *international resources*

- Doctor of Philosophy (Ph.D.) in Nuclear Engineering
- Master of Engineering (M.Eng.) in Nuclear Engineering
- Master of Science (M.Sc.) in Nuclear Technology
- Bachelor of Nuclear Engineering (B. Eng.) – Start 2016

Integration of Renewable Energy Sources with SMRs

- Climate change combined with the price volatility of energy and the intermittency of renewable resources
- *Flexible baseload supply* has the potential to produce positive synergism among these clean energy options
- Enhancing the *diversity of technology and fuel* sources
- SMRs can play a stabilizing role in a grid with a large share of renewable sources and contribute to *reducing the cost* of a low carbon energy supply
- The synergies between SMRs and renewable energy could be a *solution to an energy challenge*
- The *hybrid system* is a new approach to an energy system which could lead to better utilization of resources.

Thailand Institute of Nuclear Technology (Public Organization) 9/9 moo 7, Sai Moon, Ongkharak, Nakorn Nayok 26120 Tel. : +66 3739 2901 (to 6) Fax : +66 3739 2913 www.tint.or.th

(anu Tint

Hybrid system

https://tva-azr-eastus-cdn-eptvawcm-prd.azureedge.net/

https://www.researchgate. net/publication/339189651

Criteria Before Roadmap for Operating Organization (EGAT)

National level nuclear infrastructure has been established	Owner/operating organization (EGAT)	Selected SMRs Technology	
 NEPIO and Regulatory body (OAP) OAP need to revise the Nuclear Energy for Peace Act and Ministerial Regulation to have processes for reviewing and accepting SMR reactor licensing documentations 	 Qualified technical staff (experience in planning and managing complex projects), Reactor engineering and safety, Power plant operations, Health physics, Quality assurance, Procurement 	 Based on proven SMR technologies, Sufficiently component supplier base, Prefer SMR operational data from a reference plant 	Nayok 26120

Criteria Before Roadmap for the Regulatory Body (OAP)

9/9 moo 7, Sai Moon, Ongkharak, Nakorn Nayok 26120 . : +66 3739 2901 (to 6) Fax : +66 3739 2913 www.tint.or.th

Public Acceptance and Stakeholder Engagement

- Consideration of SMRs: Licensing, siting, construction and operation
- Gaining public understanding and acceptance is challenging for considering of SMRs in Thailand
- Creating awareness of *benefits and risks of SMRs* to the local community and public
- Listening to stakeholders and local community to get support from them and building relationship
- Start to engaging with stakeholders and openly discuss problems and difficulties encountered and the plans to successfully resolve them
- Continue to *develop strategy and process* through SMRs lifecycle
 Thailand Institute of Nuclear Technology (Public Or

Challenges for Considering SMRs in Thailand

- National position and national policy
 - Political instability, difficult to finance
 - Government commitment > Focusing on RE + Hybrid technologies
- Public acceptance and stakeholder engagement
 - Promoting and participating of the local community
- Laws and regulation for SMRs
 - Nuclear Energy for Peace Act (updated on 2019)
 - Amendment for SMRs (licensing, security and transport)
 - Long times to license new technology
- Research on SMRs technology
 - Energy markets are rapidly change and flexible systems are attractive
 Thailand Institute of Nuclear Technology (Public Organization)

9/9 moo 7, Sai Moon, Ongkharak, Nakorn Nayok 26120 Tel. : +66 3739 2901 (to 6) Fax : +66 3739 2913 www.tint.or.th

MART GRID

https://www.ivy-emeter.com/

Summary and Conclusion

- Thailand developed *infrastructure necessary* to carry out a nuclear power program including SMRs, and IAEA provided *INIR mission* to review in December 2010.
- New SMRs technology can be used to *inform policy decisions, government and industry* in terms of financial guarantees and incentives, and human resource development.
- For the SMRs project planning, EGAT, OAP, TINT and academic institutes were established necessary requirements and overall structures, identified by the IAEA's Milestones approach.
- Regulatory bodies (OAP), should *establish regulatory framework*, requirements and guidance that can be applied broadly, regardless of SMRs technology types being considered.
- SMRs technologies can be used for *co-generation applications* and considered as an *attractive option* to enhance energy supply security.
- *Climate change* combined with *high energy price* and the *intermittency of renewable* resources have provided an incentive to consider integrating SMRs with renewable energy sources.
- As a hybrid with renewable energy sources, SMRs as a flexible baseload supply which have the potential to lead positive synergism among these clean energy options.

https://www.iaea.org/services/key-programmes/international-projecton-innovative-nuclear-reactors-and-fuel-cycles-inpro

สถาบันเทคโนโลยีนิวเคลียร์แห่งชาติ (องค์การมหาชน) Thailand Institute of Nuclear Technology (Public Organization)