
Forum for Nuclear Cooperation in Asia (FNCA)

<u>2024 Study Panel supported by Atomic Energy Commission of Japan</u> アジア原子力協力フォーラム

2024.03.11 三田共用会議所 大会議室

"Japan's Action Plan for Production and Utilization of Medical Isotopes"

<u>量子科学技術研究開発機構 QST</u> <u>量子医科学研究所</u> <u>分子イメージング診断治療研究部</u>

Tatsuya HIGASHI

Dept. of Molecular Imaging and Theranostics Institute for Quantum Medical Science (iQMS) National Institutes for Quantum Science and Technology (QST), Chiba, Japan

Disclosure of Conflict of Interest Tatsuya HIGASHI

Matters requiring disclosure of COI with regard to our presentation are as follows;

Research funding : AMED JP17pc0101014

Nihon Medi-Physics Co.,Ltd. (2018.04 ~ 2021.03)

Targeted Radiopharmaceuticals orTargeted Radionuclide Therapy \rightarrow TRT

Targeted Radionuclide Therapy(TRT) in Japan (2022~23)

Health care insurance covered TRTs in Japan

beta-emitters

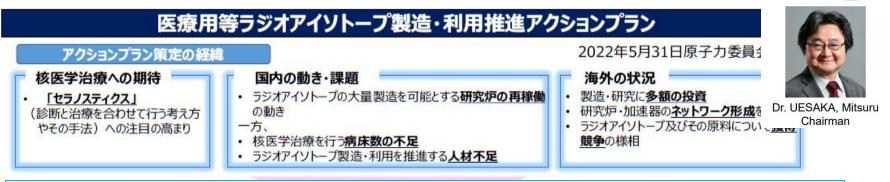
- 1 I-131 Nal: Graves disease
- ①' I-131 Nal: Differentiated Thyroid Cancer (DTC)
- 2 Sr-89 SrCI2: Metastatic Bone Tumors
- ③ Y-90 Zevalin: CD20+ low grade B-cell Lymphoma
- ⑤ I-131 MIBG: pheochromocytoma & paraganglioma
 → Approved in 2021
- (6) Lu-177 DOTATATE: Neuroendocrine tumors
 - \rightarrow Approved in 2021
- ⑦ Lu-177 PSMA-617: Metastatic mCRPC : Under Clinical Trial
- ⑧~ Cu-64 ATSM and other beta emitters : Under Clinical Trial

alpha-emitter

- ④ Ra-223 RaCl2: Metastatic Bone Tumors of mCRPC (from 2016)
- ⑧~ Several New Alpha Emitters: : Under Clinical Trial

Problems in Japan:

•Severe shortage of TRT inpatient room •Most of Radionuclides & TRT agents imported \Rightarrow Domestic Production needed _



"Special Subcommittee for securing Medical Radioisotope Production and Utilization" & Action Plan in 2022

Japan Atomic Energy Commission (JAEC)

National Action Plan in 2022 aiming to have successes within 10 years


- ① Promotion of initiatives for domestic production and stable supply of important isotopes
- ② Development of systems and structures for promoting the use of isotopes in medical settings
- ③ Promotion of research and development that contributes to domestic production of isotopes & radiopharmaceuticals
- ④ Strengthening research infrastructure, human resource development, and networks for isotope production and utilization

Ministries and agencies cooperation to promote TRT: A breakthrough in Japan

"Special Subcommittee for securing Medical Radioisotope Production and Utilization" & Action Plan in 2022

Japan Atomic Energy Commission (JAEC)

National Action Plan in 2022 aiming to have successes within 10 years

- ① Promotion of initiatives for <u>domestic production and</u> <u>stable supply of important isotopes: At-211 & Ac-225</u>
- ② Development of systems and structures for promoting the use of isotopes in medical settings
- ③ Promotion of research and development that contributes to domestic production of isotopes & radiopharmaceuticals
- ④ Strengthening research infrastructure, human resource development, and networks for isotope production and utilization

Ministries and agencies cooperation to promote TRT: A breakthrough in Japan O 科学技術・イノベーション政策、健康・医療政策、がん対策の観点からも重要であるため、関係する政府戦略の方向性とも軌を一にして取り組む

R&D achievement of QST in ²¹¹At production method

Vertical irradiation system

- Bending Magnet : horizontal beam line → vertical beam
- Solution for low melting point's targets (Ga, Bi, etc)
- Solution for non-selfsupported targets (powder, granule, shots and others)

Glove box for safety At-211 handling

QST : Established stable manufacturing methods of ²¹¹At) in 2014, suppling to other facilities nation-wide. Technology Transfer to FMU in 2018.

Nagatsu K., Hasegawa S., et al. Appl. Radiat. Isot. (2014)

²¹¹At astatine: Japan leading the way in manufacturing research

He

2

Ne

10

Ar

FILE

18

Kr

クリプトン

36

Xe

キセノン

54

Rn

Halogens

N章素

7

P

リン

15

As

七素

33

Sb

51

Bi

EXTA

83

ホウ素

5

Al

アルミニウム

13

Ga

ガリウム

31

In

49

Tl

タリウム

81

炭素

6

Si

ケイ素

14

Ge

カレマーウノ

32

Sn

50

Pb

館

82

() 酸素

S 硫黄

16

Se

セレン

34

Te

FILL

52

Po

ボロニウム

84

フッ素

9

Cl

坦素

17

Br

ヨウ素

53

アスタチン

- 100% a-emitter without gamma ray: Half life : 7.2 hours
- Mean energy : 6.79 MeV
- Ray range : 55-70µm
- ²¹¹Po X-ray: imaging is available
- For production: **middle > cyclotron**
- <u>Bi-209 (alpha,2n) At-211</u>

Problems:

- At-211 can be produced only by middle or large sized cyclotron: QST, RIKEN, Osaka U., Fukushima MU in Japan.
- At-211 cannot be produced by reactors.

The half-life of At-211 is only 7 hours: this is a big problem for supply network for clinical use of radiopharmaceuticals.

For nation-wide supply of At-211 : An innovation is needed.

211At

7.2 h

207Ph

stable

EC (58%)

211Po

516 ms

α-decav

 $E\alpha = 7.5 \text{ MeV}$

EC:軌道電子捕獲

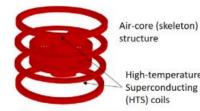
α-decay (42%)

 $E\alpha = 5.9 \text{ MeV}$

207Bi

32.9 y

EC


Results in Physics Volume 33, February 2022, 105090

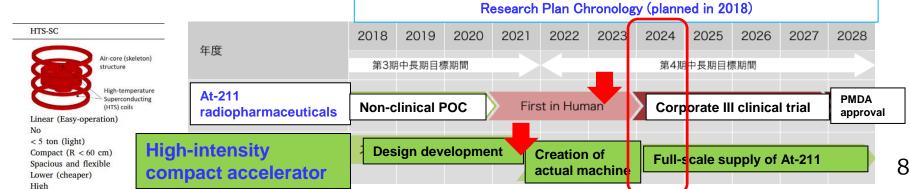
Beam dynamics and characteriza of a new high-intensity compact aircore high temperature superconducting skeleton cyclotron (HTS-SC)

H.W. Koay 🙎 🖂 , M. Fukuda 🙎 🖂 , H. Kanda, T. Yorita

Field shaping Saturation Weight Magnet size Rooms for Subcomponents Power consumption Stability and reproducibility A new small sized cyclotron (can be installed in usual hospitals) is under R&D in Osaka U and others. Further R&D is needed.

HTS-SC

structure


High-temperature Superconducting (HTS) coils

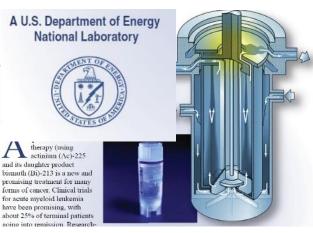
Linear (Easy-operation) No < 5 ton (light)Compact (R < 60 cm) Spacious and flexible Lower (cheaper) High

QiSS (Quantum Innovation for Safe and Smart Society) Research Project / Osaka U.

Ac-225 : Useful but having big problems in production and supply

²²⁵Ac is produced by ²²⁹Th generator at present

 \cdot ²²⁹Th comes from atomic fuels (available only in USA, Russis, and EU, the export / import strictly limited)


²²⁹Th generator can produce very small amount of Ac-225 (²²⁹Th comes from nuclear fuel: ²³³U)

Th-229 generator

- 225Ra Yield = >99%
- 225Ac Yield = 99.2 + 0.5%
- 229Th Recovery = >99%

225Ac purity
 < 0.0001% 229Th
 < 0.0001% 225Ra

EU and US 50mCi/m

• At present :

Total production : 50,000MBq/ year → 225Ac-PSMA-617: 10,000/year · only 2,500 patients can be treated

Every year, 140,000 patients die from prostate cancer in the World

> Ac-225 Short supply

Total production in the World : about 50,000MBq/y

US: Oak Ridge NL \rightarrow US 16 > mCi/week

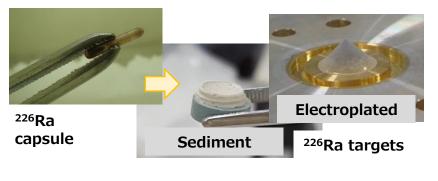
Russia: Joint Stock Company, Obninsk \rightarrow

IAEA/JRC Ac-225 Workshop 2018 Feasible Candidates for Ac-225 synthesis Methods

17-	TAEA/JRC AC-225 Workshop 2018 Feasible Candidates for AC-225 synthesis Methods							
	Th-229/Ac-225 generator At present	Th-232 Nuclear Spallation	Ra-226 Ra-226 Neutron Capture Photo Nuclear Reaction		Ra-226 Nuclear Transmutation			
	$\begin{array}{c} {}^{233}U_{(160k a)} \rightarrow \\ {}^{229}Th_{(7.3k a)} \rightarrow \\ {}^{225}Ra_{(15 d)} \rightarrow \\ \end{array}$	²³² Th(p,x) ²²⁵ Ra → ²²⁵ Ac cyclotron	²²⁶ Ra(3n,2 β) ²²⁹ Th \rightarrow ²²⁵ Ra \rightarrow ²²⁵ Ac ²²⁸ Ra(n, γ) ²²⁹ Ra \rightarrow ²²⁹ Th	²²⁶ Ra(γ,n) ²²⁵ Ra → ²²⁵ Ac Linear accelerator	²²⁶ Ra(p,2n) ²²⁵ Ac cyclotron			
Machin e	Th-229 Solution Natural Process	Large Scale Accelerator (100 MeV+)	Nuclear Reactor	Linear Accelerator, etc	Small Scale Accelerator (<25 MeV)			
Instituti	ORNL	Tri-Lab, NorthStar	ORNL	ANL, NIOWAVE	JRC, ZAG, DKFZ			
on	JRC	🔶 TRIUMF	OBRINSK*		SCK-CEN			
	IPPE	INR	CNL		CNEA _{/IAEA}			
	A the Parties of the	• Particular Control Contro Control Control Control Control Control Control Control		Hitachi,Tohoku	NPI KIRAMS			
Pros	Only One Current Method	Easy in Handling of Th- 232, 110 nCi/g-Th		U., Tokyo U.	Convenient with small scale, relative high yield			
Cons	Short Supply	Ac-227 Impurities: may be problematic in GMP as Medical Use	Challenging production path: Short Supply	Very Low Yield 10g of Ra-226 is necessary : Short Supply	50mg of Ra-226 is necessary: Short Supply			
Reactor Regulat ion Law	Problematic in the presence of Th Impurities	Problematic in the presence of Th Impurities	Problematic in the presence of Th Impurities	No Problem	No Problem			

Creation of Harmonious Diversity

TAT Project at QST : ²²⁵Ac Production


•Ac-225: high yield production in one batch has not established worldwide

•QST focused on the use of ²²⁶Ra needles for brachytherapy stored as medical waste

Transmutation path

²²⁶Ra(p, 2n)²²⁵Ac + chemical separation + cooling

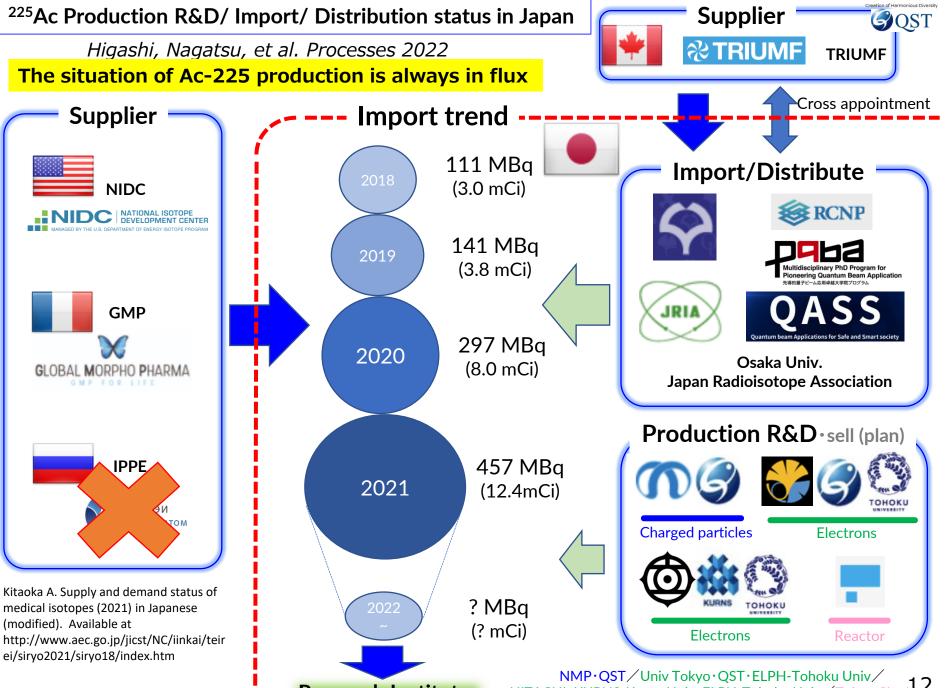
•QST: A trial of Ac-225 cyclotron production succeeded in 2017

Ra-226: $T_{1/2} = 1600$ years Ac-225: $T_{1/2} = 10$ days

AMED: government funding study project "**CiCLE**" started in 2018, by **Nihon Medi-Physics (NMP)**

"CRADLE Building" in Chiba Est'd in Sep. 2019 Investment: 3.3Bi JPY = about 30M USD

Cyclic Innovation for Clinical Empowerment

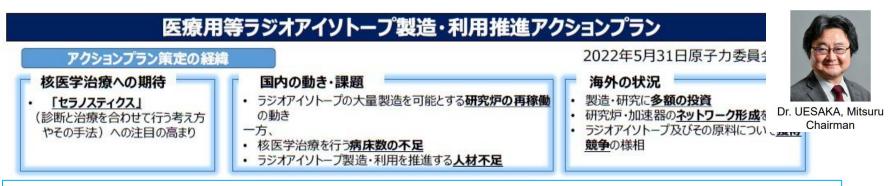


European Journal of Nuclear Medicine and Molecular Imaging (2021) 49:2	""Nagatsu, Suzuki, et al.			
https://doi.org/10.1007/s00259-021-05460-7	Eur J Nucl Med Mol			
ORIGINAL ARTICLE	Imaging 2021			

Cyclotron production of $^{\rm 225}{\rm Ac}$ from an electroplated $^{\rm 226}{\rm Ra}$ target

Kotaro Nagatsu¹ · Hisashi Suzuki¹ · Masami Fukada¹ · Taku Ito^{1,2} · Jun Ichinose^{1,2} · Yoshio Honda^{1,2} · Katsuyuki Minegishi¹ · Tatsuya Higashi³ · Ming-Rong Zhang¹

NMP succeeded in cyclotron production of the world's first **GBq amount of** ²²⁵Ac by the transmutation in April 2022



Research Institutes

HITACHI·KURNS-Kyoto Univ·ELPH-Tohoku Univ/ Tokyo City

"Special Subcommittee for securing Medical Radioisotope Production and Utilization" & Action Plan in 2022

National Action Plan in 2022 aiming to have successes within 10 years

- ① Promotion of initiatives for domestic production and stable supply of important isotopes
- ② Development of <u>systems and structures</u> for promoting the use of isotopes <u>in medical settings</u>
- ③ Promotion of research and development that contributes to domestic production of isotopes & radiopharmaceuticals
- ④ Strengthening research infrastructure, human resource development, and networks for isotope production and utilization

Ministries and agencies cooperation to promote TRT: A breakthrough in Japan O 科学技術・イノベーション政策、健康・医療政策、がん対策の観点からも重要であるため、関係する政府戦略の方向性とも軌を一にして取り組む

Great concern in Japan: Regulation of radionuclides

- Creation of Harmonious Diversity
- The use of radionuclides is regulated by Radionuclide Control Act. Clinical use of radiolabeled pharmaceuticals is regulated by Medical Care Act.
- (1) <u>Administration of radiolabeled pharmaceuticals is</u> permitted only in <u>designated-controlled-areas</u> (with special radiation protection system) by these laws.
- (2) Administration of radiolabeled pharmaceuticals <u>with</u> <u>higher amount</u> requires an <u>inpatient room in designated</u> <u>–controlled-areas</u> (with special radiation protection system)
- (3) <u>The total amounts</u> of radionuclides and radiolabeled pharmaceuticals available in a <u>designated-controlled-area</u> per day, year, etc, are strictly regulated by these laws.

Strict regulation results in severe shortage of

1TRT inpatient rooms & **2**designated-controlled -areas

in Japan.

TRT: I-131 RAI Therapy for DTC in Japan

Higashi T. Kaku Igaku 53:27-43, 2016

24. 放射性ヨウ素内用療法の分類 呼称 アプレーション Remnant ablation			補助療法 Adjuvant therapy	治療 Cancer treatment		
対象と意図			画像診断で確認できないが,顕微 鏡的な残存腫瘍が存在すると考え られる患者における癌細胞の破壊			
目的	経過観察の単純化		再発予防, 遅延		顕在する癌の治療	
投与量	1.1 GBq (30 mCi)		3.7–5.6 GBq (100–150 mCi)		3.7–7.4 GBq (100–200 mCi)	
Need the de	to increase ose		Conventionally perform "Ablation" was actually Adjuvant therapy			

I-131 RAI therapy has been struggling against the shortage of radionuclide inpatient room

Creation of Harmonious Diversity

Out-patient "ablation" using 1.1GBq is increasing steadily from 2010

RAI inpatient rooms in Japan: in full blast for RAI therapy using more than 3.7GBq for more than 20 years

Japanese Clinical Guideline for Thyroid Cancers 2018 (←2010 First Edition) :

Concept change of I-131 RAI therapy results in severe shortage of radionuclide inpatient room 15

New Regulation of radionuclides in 2022: "Hospital rooms with special measures (HSM)"

 Administration and clinical use of some radiolabeled pharmaceuticals with higher amount is strictly regulated and only permitted in an inpatient room in a designated controlled area by Medical Care Act.

→ Strict regulation results in severe shortage of TRT inpatient rooms in Japan.

• From 2022, due to a revision of Medical Care Act, only in case of Lu-177, which does <u>not evaporate and does not need special ventilation</u> <u>system and drainage tank for radionuclides</u>, **TRT using Lu-177 radiopharmaceuticals** is allowed to be performed in a simplified TRT inpatient room, "Hospital rooms with special measures (HSP)".

病室内 (全景)

Only minimum radiation protection procedure is required

No need to have special ventilation system, drainage tank & monitoring system

A solution of **①TRT inpatient rooms** in Japan!

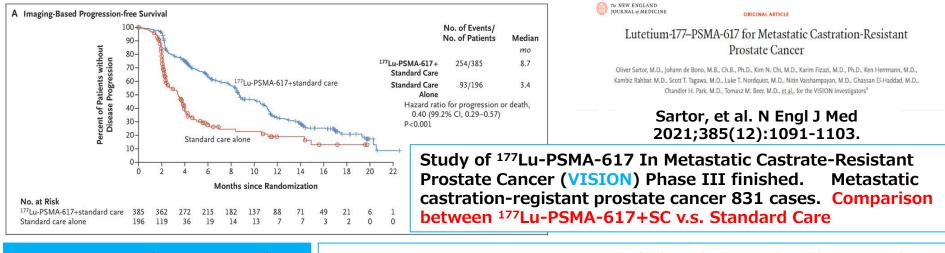
reation of Harmonious Diversit

This simplified TRT room: **HSP** is


- much cheaper in maintenance and
- easier to construct or prepare

as compared to a traditional TRT inpatient room. 16

The impact of "Hospital rooms with special measures (HSM)"


In 2021, Japanese PMDA approved PRRT by ¹⁷⁷Lu-DOTATATE "Lutathera ®"

National Insurance fee of HSM: set high
 HSM: already installed in > 70 hospitals
 Hospitalized care of Neuro Endocrine
 Tumor (NET) patients is only needed for
 1~2 days in an inpatient TRT room

Big solution to the problem of ①TRT inpatient rooms in Japan.

In 2022, FDA approved mCRPC-PSMA therapy by ¹⁷⁷Lu-PSMA-617 "Pluvicto ®"


Not approved in Japan, but a clinical trial has already started in Japan At present, it is concerned that hospitalized care of patients will be **needed for 2~5 days** in an inpatient TRT room because of strict regulation in Japan.

 \rightarrow Various deregulation efforts are still underway to resolve issues.

"Special Subcommittee for securing Medical Radioisotope Production and Utilization" & Action Plan in 2022

Japan Atomic Energy Commission (JAEC)

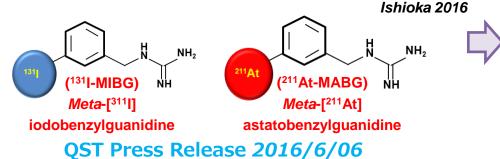

National Action Plan in 2022 aiming to have successes within 10 years

- ① Promotion of initiatives for domestic production and stable supply of important isotopes
- ② Development of systems and structures for promoting the use of isotopes in medical settings
- ③ Promotion of <u>research and development</u> that contributes to domestic production of <u>isotopes & radiopharmaceuticals</u>
- ④ Strengthening research infrastructure, human resource development, and networks for isotope production and utilization

Ministries and agencies cooperation to promote TRT: A breakthrough in Japan O 科学技術・イノベーション政策、健康・医療政策、がん対策の観点からも重要であるため、関係する政府戦略の方向性とも軌を一にして取り組む

⁶⁴Cu-ATSM: A very-first Japan-made TRT radiopharmaceutical

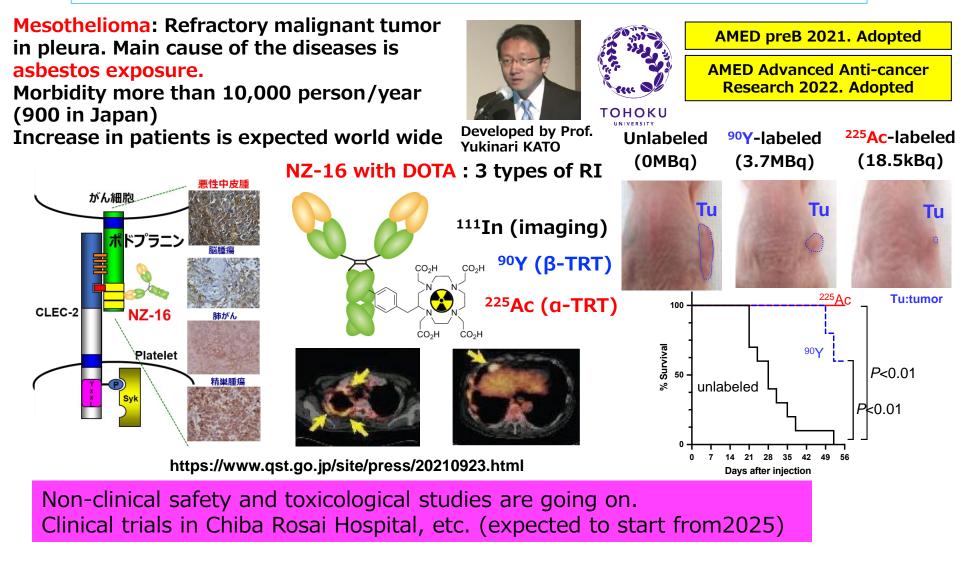
Cu-ATSM was at first developed as a cancer-imaging agent as ⁶²Cu-ATSM



²¹¹At-NaAt: [²¹¹At] sodium astatine ²¹¹At-MABG: Meta-[²¹¹At]astatobenzylguanidine

which has a similar structure to MIBG

Synthesizer Unit


Preliminary Nonclinical study

Clinical study of MABG has started from 2022 at FMU for the first time in the world 20

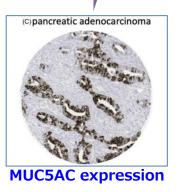
Creation of Harmonious Diversity

TAT Project at QST : Anti-PDPN antibody

Anti-podoplanin (NZ-16) antibody for malignant mesothelioma

 \rightarrow To obtain approval and commercialization for the first Japan-made ²²⁵Ac-agent

TAT Project at NMP : Achievement of CiCLE project



Anti-MUC5AC antibody (NMK89) for pancreatic cancer: Theranostics Approach

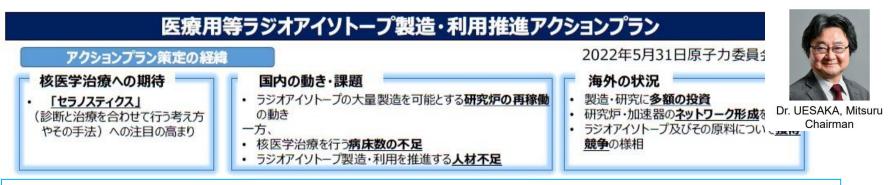
QST: Transmutation path ²²⁶Ra(p, 2n)²²⁵Ac

+ chemical separation + cooling

Pancreatic Cancer: One of the most refractory ca. in the world. Morbidity about 40,000 person/year in Japan with 5YS rate of 8.5%. Increase in patients is expected world wide

	Tumor entity	n on TMA	MUC5AC immunostaining					
			n analyzable	Negative (%)	Weak (%)	Moderate (%)	Strong (%)	Positive (%)
Fumors of the digestive system	Adenomatous polyp, low-grade dysplasia	50	22	36.4	18.2	13.6	31.8	63.6
	Adenomatous polyp, high-grade dysplasia	50	30	40.0	16.7	10.0	33.3	60.0
	Adenocarcinoma of the colon	50	36	83.3	0.0	8.3	8.3	16.7
	Adenocarcinoma of the small intestine	10	6	66.7	0.0	0.0	33.3	33.3
	Gastric adenocarcinoma, diffuse type	146	113	55.8	8.0	8.8	27.4	44.2
	Gastric adenocarcinoma, intestinal type	144	115	60.9	16.5	5.2	17.4	39.1
	Gastric adenocarcinoma, mixed type	62	54	64.8	9.3	5.6	20.4	35.2
	Adenocarcinoma of the esophagus	50	39	28.2	23.1	17.9	30.8	71.8
	Squamous cell carcinoma of the esophagus	49	31	96.8	0.0	0.0	3.2	3.2
	Squamous cell carcinoma of the anal canal	50	26	92.3	0.0	0.0	7.7	7.7
	Cholangiocarcinoma	120	100	79.0	1.0	7.0	13.0	21.0
	Hepatocellular carcinoma	50	48	100.0	0.0	0.0	0.0	0.0
	Ductal adenocarcinoma of the	50	33	36.4	24.2	6.1	33.3	63.6
	Pancreatic/Ampullary adenocarcinoma	30	17	58.8	11.8	5.9	23.5	41.2
	GIST	50	34	100.0	0.0	0.0	0.0	0.0

Rico, et al. Technol Cancer Res Treatment 2021


AMED: government funding study project "Medical Research and Development Innovation Infrastructure Creation Project (CiCLE)" started in 2018, by Nihon Medi-Physics (NMP)

ClinicalTrials.gov About This Site ~ Find Studies ~ Data About Studies ~ Study Basics ~ PRS Info ~ RECRUITING () Safety, Tolerability, Pharmacokinetics, Radiation Dosimetry, and PET Imaging Properties of 89Zrlabeled hNd2 (NMK89) in Patients With Pancreatic Cancer ClinicalTrials.gov ID U NCT06129422 Sponsor () Nihon Medi-Physics Co., Ltd. Information provided by 1 Nihon Medi-Physics Co., Ltd. (Responsible Party) Last Update Posted 1 2023-11-13 1 [1] + Expand all content - Collapse all content **Study Details** Table View No Results Posted Record History On this page **Study Overview** Study Overview Study Start (Actual) Brief Summary Contacts and Locations This trial will be a non-randomized, Phase I trial to evaluate safety, 2023-10-31 Participation Criteria tolerability, biodistribution, radiation dosimetry, pharmacokinetics and P Study Plan Primary Completion (Estimated) imaging properties following an infusion of 37 MBg (1 mCi) of 89Zr-labeled Collaborators and Investigators hNd2* (NMK89) in patients with pancreatic cancer that are positive for 2024-03-31 Study Completion (Estimated) * hNd2: Recombinant humanized Nd2 (anti-human MUC5AC monoclonal Study Record Dates 2024-03-31 antibody) More Information Enrollment (Estimated) Official Title A Phase I Trial to Assess Safety, Tolerability, Pharmacokinetics, Radiation 10 Dosimetry, and Positron Emission Tomography (PET) Imaging Properties of Study Type 0 89Zr-labeled hNd2 (NMK89) in Patients With Pancreatic Cancer Histologically Positive for MUC5AC Interventiona Conditions G Phase 0 Pancreatic Cancer Phase 1

NMP succeeded in starting their CiCLErelated First-in-Human trial in Oct. 2023 using Zr-89 MUC5AC antibody. 22

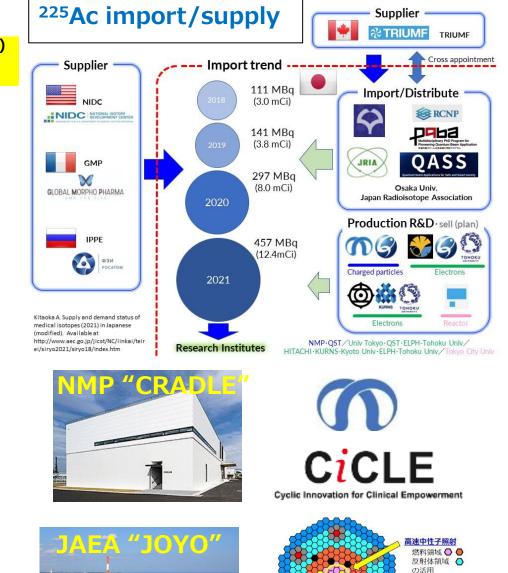
"Special Subcommittee for securing Medical Radioisotope Production and Utilization" & Action Plan in 2022

National Action Plan in 2022 aiming to have successes within 10 years

- ① Promotion of initiatives for domestic production and stable supply of important isotopes
- ② Development of systems and structures for promoting the use of isotopes in medical settings
- ③ Promotion of research and development that contributes to domestic production of isotopes & radiopharmaceuticals
- ④ Strengthening research <u>infrastructure</u>, <u>human resource</u> <u>development</u>, <u>and networks</u> for isotope production and utilization

Ministries and agencies cooperation to promote TRT: A breakthrough in Japan

211At & 225Ac Production R&D/ Import/ Distribution status in Japan



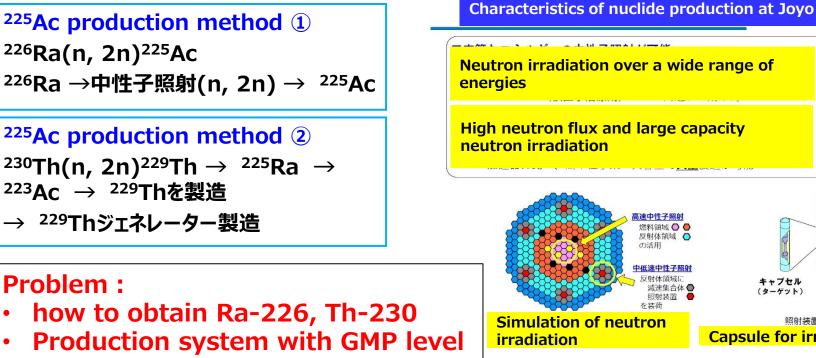
中低速中性子照射 反射体領域に 減速集合体 ● 照射装置 ● を装荷

多様な中性子照射場

24

TRT in Japan: Potential use of reactors

S OST

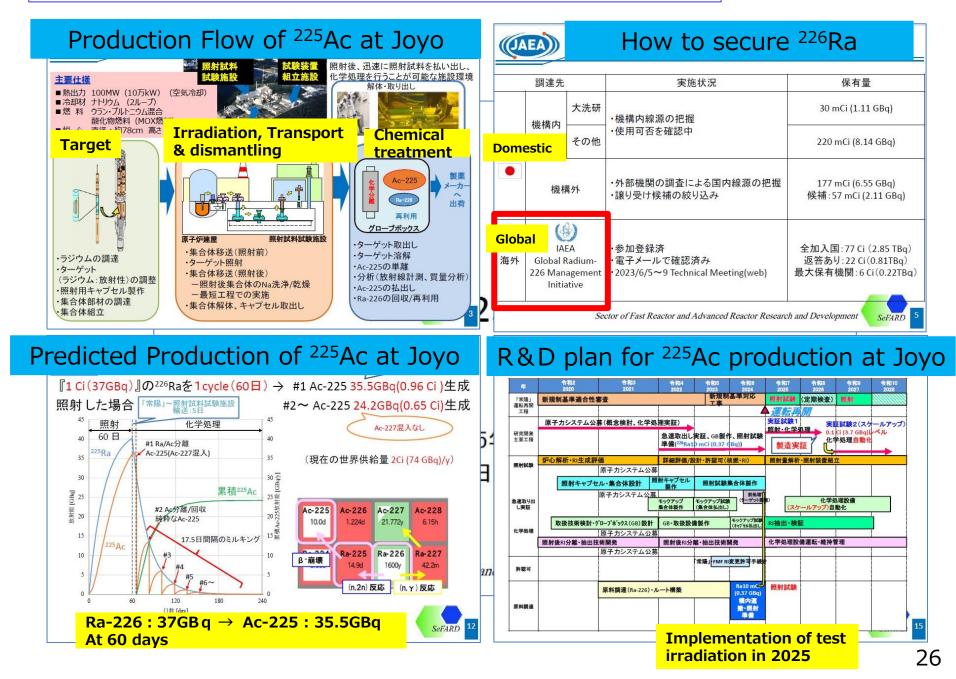

FY2020 Research Fund: "Research and development towards establishing self-sufficient technology for medical RI using domestic nuclear infrastructure" Naoyuki Takagi Japan Medical Isotope Co., Ltd., Kanazawa University, Mitsubishi Heavy Industries, Ltd., Japan Atomic Energy Agency

- ²²⁵Ac production: R&D accelerated world-wide
- Production by reactor is being focused

JAEA: Fast breeder reactor \cdot Joyo (Higher fast neutron flux, higher heat removal amount than light-water reactor)

Fast Breeder Reactor "Joyo"

Neutron irradiation over a wide range of


High neutron flux and large capacity

https://www.tcu.ac.jp/news/all/20201126-33360/

National Action Plan: Follow-up in 2023: JAEA

A solution of ①TRT inpatient rooms & ②designated-controlled-areas in Japan!

- Expensive budget is needed for initial construction & renewal of each traditional TRT inpatient room (about 5million dollors.5億円)
- Alpha emitters do not need thick wall for radiation protection
- Trailer house type TRT room would be OK for Alpha emitter TRT

Mobile Controlled Area for TRT (MCAT[™])

◆ Patent pending : 2020-025584

MOBILITY

- Easiest installation and decommission
- ◆ Anytime, anywhere, as well as in emergency

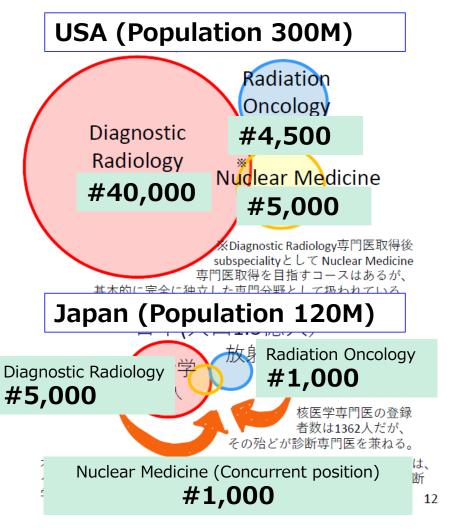
COMPACT

- Only 3-cars parking space (footprint)
- Minimum, but full-satisfactory equipment/utilities

Access-friendly

- ♦ Best way to perform emerging ²²⁵Ac treatments
- Solution for shortage and disparities in cancer-care

TRAILER


- ♦ Approx. 10% installation cost than building
- Quiet and comfortable inside than imagine.

In 2022, Nuclear Regulation Authority approved MCAT[™] in Radionuclide Control Act. 27

WHO will take care of TRT practices in Japan

The number of specialist:

Population per specialist : USA :					
Diagnostic radiologist :	7,500				
Radiation Oncologist :	66,667				
Nuclear Medicine Physician (independent position) :					
	60,000				
日本: Diagnostic radiologist:					
Diagnostic radiologist i	26,000				
Radiation Oncologist :	130,000				
Nuclear Medicine Physician (concurrent position): 95,450					
	<i>33,</i> 430				
Need for training education pro experts (doctor, medical radiolo	<u> </u>				

technician, medical physicist, nurse, etc)

Feb. 1. 2022: Atomic Energy Commission, Medical Radioisotope Production and Utilization Subcommittee: Prof. Yoko Takano's presentation: modified

Problems of the development of TRT/TAT in Japan

- To secure raw materials, to develop methods of synthesis To develop new TRT agents, start clinical trials
- To establish companion diagnostics: theranostic twins
- To establish standards of clinical dosimetry for beta emitters
- To establish standards of dosimetry and release criteria for alpha emitters because of its multiple decay scheme
 Innovation

 Where: Shortage of location of therapy, (1) radionuclide-controlledarea, (2) inpatient room in radionuclide-controlled-area, (3) total amount of radionuclide pharmaceuticals available in radionuclide-controlled-area.

- How: To make TRT/TAT agents in GMP level
- How: Japanese Guidelines for radioactive pharmaceuticals: enough for --, imaging agents, not enough for TRT agents
- Who & How: To cultivate Human Resource: TRT experts in medicine, radiology, dosimetry, nursing, etc.

Social Innovation

- For citizen to accept this new radiation therapy
- Problems in logistics, regulations and radioactive wastes

Closing remarks

"Japan's Action Plan for Production and Utilization of Medical Isotopes"

- TRT/TAT scientific fields is booming & medical markets are glowing with supports from Japan's Action Plan.
- Clinical trials of At-211 labelled agents including NaAt & MABG have already been in progress.
- Accelerator production of Ac-225 was already established in AMED/CiCLE research project and an Ac-225 labelled agent is in a non-clinical study.
- For TRT, Who, Where, How to perform: important aspects, especially Where: "Hospital rooms with special measures (HSP)" and "MCATTM" are attracting attentions.
- "All-Japan" cooperation including Atomic Energy Commission, QST, FMU, Osaka U, & others is need to strive to develop technological and social innovations for further promotion & spread of TRT/TAT.

千葉県PRマスコット キャラクター チーバくん