

Isotopes as tracers of climate change: atmosphere-biosphere-ocean studies

Pavel Povinec

Comenius University, Bratislava, Slovakia

Nuclear Isotopic Technology and Climate Change FNCA 2021, 3-4/3/2021, Tokyo (online)

Stable (²H/H, ¹³C/¹²C, ¹⁵N/¹⁴N, ¹⁸O(¹⁶O,...)

Radioactive Natural Cosmogenic (³H, ¹⁰Be, ¹⁴C, ³⁶Cl,...) Primordial (⁴⁰K, ²³²Th, ²³⁸U, ...) Radiogenic (²²²Rn, ²²⁶Ra, ²¹⁰Pb,...)

Anthropogenic (³H, ¹⁴C, ⁹⁰Sr, ¹²⁹I, ¹³⁷Cs, Pu,...)

- ²H transport of air & water masses, exchange processes atmosphere-biosphere, atmosphere-hydrosphere,...
- ¹³C exchange processes, tracing fossil carbon,...
- ¹⁸O atmosphere-hydrosphere exchange, groundwater, seawater, past temperature records in ice,...
- ³H (T_{1/2} = 12.32 y), water molecule (HTO) transport of water masses, water dating...
- ¹⁰Be (T_{1/2} = 1.39 × 10⁶ y), aerosols, stratosphere-troposphereocean transport, ice cores, sediments...
- ¹⁴C (T_{1/2} = 5730 y), stratosphere-troposphere exchange, fossil carbon record in the atmosphere biosphere ocean, atmosphere-ocean exchange,...
- ¹³⁷Cs (T_{1/2} = 30.17 y), mostly dissolved in seawater processes in the water column, transport of water masses...
- ... and many other stable and radioactive isotopes...

Pavel Povinec

- ANTHROPOCENE epoch (>1945 present) a new epoch after the HOLOCENE epoch (10 ky)
- INDUSTRIAL era (150 years) carbon, nitrogen, sulfur oxides, metals, organics,...
- NUCLEAR era (70 years) anthropogenic radionuclides, nuclear bomb tests, global fallout, nuclear industry, nuclear accidents,...
- COSMIC era (50 years) satellites, moon, garbage in the space ,...

- New Philosophy : EGOCENTRIC vs. ECOCENTRIC approach: protection of the total environment man, fauna, flora
- CLIMATE CHANGE anthropogenic vs. natural processes, global impacts, politically driven science ?
- NUCLEAR acceptance by public ? Chernobyl & Fukushima impacts, radioactive wastes
- RENEWABLE ENERGY SOURCES sustainable for global development? BRICS countries, new world - thirsty for the energy, a new industrialization revolution – the east and south neads own revolution...

Large energy consumption growth rates after the 1945s

Energy consumption growth in 20th century

World Energy Mix

Primary Energy Projections in Terawatts

Pavel Povinec

US Energy Mix

Source: 1850-1949, Energy Perspectives: A Presentation of Major Energy and Energy-Related Data, U.S. Department of the Interior, 1975; 1950-2005, Annual Energy Review 2000, Table 1.3.

Pavel Povinec

Japan Energy Mix

Pavel Povinec

Coal Consumption

Annual Coal Consumption by Country

Pavel Povinec

Annual CO₂ Emissions

FNCA 2021, 3-4/3/2021, Tokyo (online)

-90 -80

-70 -60 -50 -40 -30 -20

-10 0 10 20 30 40 50 60 70 80 90

Latitude

0

CO₂ & CH₄ Growth in the Air

Pavel Povinec

Temperature Records

Mann et al., GRL 26(1999)759-762

Pavel Povinec

Milankovitch Cycles in Sun-Earth Relations CENTA

Pavel Povinec

FNCA 2021, 3-4/3/2021, Tokyo (online)

Recent Arctic Sea Ice Cover Changes

Pavel Povinec

FNCA 2021, 3-4/3/2021, Tokyo (online)

Sea Lever Rise

Modern era:

< 3 mm/year

PAST CLIMATE CHANGES ON THE EARTH WERE CONTROLLED BY THE SUN

HOLOCENE : too high temperature during 10 kyr - Sun

Recent climate change : anthropogenic – green-house gases

Next 100 years: - anthropogenic – green house gases ?

- natural solar activity, a new Little Ice Age ?
- a combination of both ?

IPCC Summary on Climate Change (Radiative Forcing)

> 1750 AD

Anthropogenic CO_2 : 1.7 W/m² CH_4 +others: 1 Ozone: 0.3 Aerosols: 0.6 Total: 1.6 W/m²

Natural Solar irradiance: 0.1 – 0.3 W/m² (may be higher with secondary effects)

Water vapours? The main greenhouse gas !!!

Pavel Povinec

Little Ice Age (Maunder Solar Minimum) CENTA

Temperature Change: 1680-1780 (°C)

7535205 .05 .2 .35	.5 .7

Shindell et al., Science, 294, 2001

Pavel Povinec

200

R_g

100

50

0

CENTA

Centennial **Gleissberg Cycle** 90-100 yr

Pavel Povinec

Cosmic Rays vs Solar Activity

Sunspot numbers

Data from several neutron monitors anticorrelated with solar activity

Modulation potential of Sun on Galactic Cosmic Rays (GCR)

Neutron monitor data -GCR flux In the atmosphere

Ross & Chaplin, Solar Phys. 294, 2019; Alanko-Huotari et al., Solar Phys., 238, 2006

FNCA 2021, 3-4/3/2021, Tokyo (online)

ΈΝΤΑ

Sun-Earth Impacts

Solar modulation of the galactic cosmic ray flux in the heliosphere and on the Earth

Solar wind

11-yr, 22-yr, 90-yr... solar cycles

Already detail Information on Sun – Earth impacts is avaiable

Pavel Povinec

Cosmogenic Radionuclides

Produced by interactions of CRs with atmosphere (³H, ¹⁴C, ⁷Be, ¹⁰Be, ²⁶Al, ³⁶Cl, ⁵³Mn, ¹²⁹I,...)

Ϲℇℕℸ۵

As GCR are modulated by Sun, they can be used for solar activity studies

If stored in archives (treerings, ice, sediments,corals, stalactites/stalagmites), they can be used for past solar activity studies

Pavel Povinec

¹⁴C in Wine Samples (1909-1952) CENTA

 $^{14}C(t)$ and W(t) rows for four 11-yr solar cycles (1909-1952)

¹⁴C amplitude variations: 3.3-5.6 ‰ for different solar cycles (average 4.3 \pm 1.1 ‰) Time shift between W maxima and ¹⁴C minima: 3.5-5 yr (depending on the solar cycle)

Burchuladze, Povinec et al., Nature 287, 1980

Pavel Povinec

¹⁴C in Tree-rings (1900-1954)

Attolini, Povinec et al., Radiocarbon 31, 1989

FNCA 2021, 3-4/3/2021, Tokyo (online)

Povinec et al., Radiocarbon 25, 1983

¹⁴C Bomb Effect

Solar Modulation of ¹⁴C & ¹⁰Be

Pavel Povinec

Reconstruction of Solar Irradiance Based on Sunspots and ¹⁴C Levels

Grand Solar Minima

Maunder minimum (1645-1715) ; Spörer minimum (1416-1534); Wolf minimum (1282-1342); Dalton minimum (1798-1822) ; Gleissberg minimum (1889-1901)

Pavel Povinec

Reconstruction of the Solar Activity From ¹⁰Be in GRIP Ice Core

Pavel Povinec

¹⁴C IntCal2020 (tree rings, corals,...) and ¹⁰Be (ice cores)

Reimer et al., Radiocarbon, 62, 2020

Beagle 2003/04) – Round the Globe expedition (JAMSTEC)

Increased salinity levels in bottom waters between WOCE⁹⁵ and BEAGLE

¹⁴C and ¹³⁷Cs BEAGLE/SHOTS data

Special Issue *Progress in Oceanography*, 2012: Aoyama et al., Kumamoto et al., Hirose et al., Povinec et al.

Pavel Povinec

³H, ¹⁴C, ¹²⁹I in the South Indian Ocean (ANTARES IV

100

.200

34

CO₂ sequestration - Bottom water formation - OCEANS CONTROL THE CLIMATE !!

Povinec et al., Earth Planet. Sci. Lett., 2014

Broecker, Climate Change, 1995

Pavel Povinec

Anthropogenic vs. Solar effects

(cosmic rays, aerosols, ozone, CLOUD experiment in CERN)

Further grows of green house gases (CO₂, CH₄, N₂O, fluorinated gases) **and aerosols** – also health effects – millions of people are dying per year due to atmospheric pollution

Further problems: Anthropogenic: Deforestation, Land use Natural: Volcanic eruptions, Astronomical effects, El Niño/ENSO, AMO Permafrost ???

Green house gases vs. past climate changes Growing (or stable temperature) vs. e.g. Little Ice Age

The end of the Holocene warm epoch ??? Will the Anthropocene continue as a warm epoch ???

Pavel Povinec

Pavel Povinec

Future Solar Activity Cycles

Grand Solar Activity Minima

Wolf minimum 1282-1342

Spörer minimum 1416-1534

Maunder minimum 1645-1715

WE NEED MORE INFORMATION ON PAST SOLAR ACTIVITY CYCLES – THE ROLE FOR ¹⁴C and ¹⁰Be RADIOISOTOPES

New 11-yr solar cycle started !!! What about the next one ?

Will be soon there Super Grand Solar Activity Minimum, similar to Maunder minimum ???

Acknowledgments

M. Aoyama, Uni. Tsukuba; T. Aramaki, JAERI, Mutsu; W. Burnett, Uni. Tallahassee; A.Cherkinski, Uni. Georgia; K. Fifield, ANU, Canberra; Y. Hamajima, Uni. Kanazawa; K. Hirose, Uni. Sophia, Tokyo; T. Honda[†], MIT, Tokyo; G.H. Hong, KORDI, Seoul; M. Hotchkis, ANSTO, Sydney; X. Hou, Tech. Uni. Denmark, Risoe; Y. Ikeuchi, JCAC, Chiba; T. Ito, JAERI, Tokaimura; C. Jeandel, Uni. Toulouse; A.J.T. Jull, Uni. Arizona, Tucson; W. Keiser, Uni. Ottawa; Y. Kumamoto, JAMSTEC,

Yokosuka; M. Laubenstein, LNGS, Assergi S.-H. Lee, KRISS, Daejeon G. Lujaniene, Center PST, Vilnius M. Molnár, ATOMKI, Debrecen U. Morgenstern, IGNS, Lower Hutt T. Nakanishi, Uni. Tokyo M. Nakano, JAERI, Tokaimura H. Nies, BSH, Hamburg S. Nisi, Gran Sasso, Assergi L. Palcsu, INR, Debrecen S. Shima, JMSF, Mutsu P. Steier. Uni. Vienna I. Svetlik, Inst. Nucl. Phys., Prague M. Taniguchi, RIHN, Kyoto Y. Tateda, CRIEPI, Abiko F. Terrasi, Uni. Naples O. Togawa, JAERI, Tokaimura G. Ustinova, GEOKHI, Moscow Z. Top, Uni. Miami

Uni. Bratislava; IAEA-EL, Monaco; LSM, Modane; LNGS Assergi; CERN, Geneva;JINR, Dubna; UNESCO, Paris

CENTA team, Uni. Bratislava

European Structural Funds (Projects # 120012, 120026, 220004, ACCORD) International Atomic Energy Agency (Projects # SLR/008 and SLR/1001, RER 7014) APVV (Projects # 15-0576, 16-0148) VEGA (Projects # 1/0108/08, 1/0891/17, 1/0783/14, 1/0421/20)